
Generalized Metric Repair on Graphs
Chenglin Fan
Department of Computer Science; University of Texas at Dallas; Richardson, TX 75080, USA
cxf160130@utdallas.edu

Anna C. Gilbert
Department of Mathematics; University of Michigan; Ann Arbor, MI 48109, USA
annacg@umich.edu

Benjamin Raichel
Department of Computer Science; University of Texas at Dallas; Richardson, TX 75080, USA
benjamin.raichel@utdallas.edu

Rishi Sonthalia
Department of Mathematics; University of Michigan; Ann Arbor, MI 48109, USA
rsonthal@umich.edu

Gregory Van Buskirk
Department of Computer Science; University of Texas at Dallas; Richardson, TX 75080, USA
greg.vanbuskirk@utdallas.edu

Abstract
Many modern data analysis algorithms either assume or are considerably more efficient if the
distances between the data points satisfy a metric. However, as real data sets are noisy, they often
do not possess this fundamental property. For this reason, Gilbert and Jain [10] and Fan et al. [9]
introduced the closely related sparse metric repair and metric violation distance problems. Given
a matrix, representing all distances, the goal is to repair as few entries as possible to ensure they
satisfy a metric. This problem was shown to be APX-hard, and an O(OP T 1/3)-approximation was
given, where OP T is the optimal solution size.

In this paper, we generalize the problem, by describing distances by a possibly incomplete
positively weighted graph, where again our goal is to find the smallest number of weight modifications
so that they satisfy a metric. This natural generalization is more flexible as it takes into account
different relationships among the data points. We demonstrate the inherent combinatorial structure
of the problem, and give an approximation-preserving reduction from MULTICUT, which is hard
to approximate within any constant factor assuming UGC. Conversely, we show that for any fixed
constant ς, for the large class of ς-chordal graphs, the problem is fixed parameter tractable, answering
an open question from previous work. Call a cycle broken if it contains an edge whose weight is larger
than the sum of all its other edges, and call the amount of this difference its deficit. We present
approximation algorithms, one depending on the maximum number of edges in a broken cycle, and
one depending on the number of distinct deficit values, both quantities which may naturally be
small. Finally, we give improved analysis of previous algorithms for complete graphs.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures → Computational geometry

Keywords and phrases Approximation, FPT, Hardness, Metric Spaces

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.24

Funding C. Fan, B. Raichel, and G. Van Buskirk supported by NSF awards 1566137 and 1750780.

1 Introduction

Given a set of distances determined by a collection of data points, one of the most basic
questions we can ask is whether the distances satisfy a metric. This basic property is
fundamental to a large number of computational geometry and machine learning tasks such

© Chenglin Fan, Anna C. Gilbert, Benjamin Raichel, Rishi Sonthalia, and Gregory Van Buskirk;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cxf160130@utdallas.edu
mailto:annacg@umich.edu
mailto:benjamin.raichel@utdallas.edu
mailto:rsonthal@umich.edu
mailto:greg.vanbuskirk@utdallas.edu
https://doi.org/10.4230/LIPIcs.SWAT.2020.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Generalized Metric Repair on Graphs

as metric learning, dimensionality reduction, and clustering (see for example [17, 2]). It
is fortuitous when the underlying distances arise from a metric space or are at least well
modeled by one, as certain tasks become provably easier over metric data (e.g., approximating
the optimal TSP tour), and moreover it allows us to use a number of computational tools
such as metric embeddings. However, due to noise, missing data, and other corruptions, in
practice these distances often do not adhere to a metric.

As a motivating example, consider the following standard manifold learning task ([3, 13,
15]). Given a high dimensional data set, we wish to uncover its intrinsic lower dimensional
structure, allowing us to visualize and to understand the geometry of the data. Isomap [15]
is one of the standard embedding tools used to find this lower dimensional structure, and
Figure 1.1 shows how Isomap nicely recovers the 2d spiral when embedding a 3d Swiss roll
data set. However, as shown on the right in Figure 1.1, if we perturb even a small fraction of
the distances this structure is lost in the embedding produced by Isomap.

(a) Original Swissroll data. (b) Embedded true distances. (c) Embedded corrupted distances.

Figure 1.1 (a) 2000 data points in the Swissroll. For (b) and (c) we took the pairwise distance
matrix and added 2N (0, 1) noise to 5% of the distances. We then constructed the 30-nearest-neighbor
graph G from these distances, where roughly 8.5% of the edge weights of G were perturbed. For (b)
we used the true distances on G as the input to Isomap. For (c) we used the perturbed distances.

Motivated by the above applications, the problem of minimally fixing the distances to
uncover the data metric was previously considered. Specifically, Fan et al. [9] and Gilbert
and Jain [10] respectively formulated the Metric Violation Distance (MVD) and the Sparse
Metric Repair (SMR) problems, where in both cases one is given a full distance matrix, and
the goal is to modify as few entries as possible so that the repaired distances satisfy a metric.

More generally, however, the underlying distance graph will be incomplete as data may be
missing or the constructed distance graph is inherently sparse, as the above manifold example
demonstrates. Working directly with this incomplete graph is not only computationally
more desirable when the graph is sparse, but also may be necessary to uncover the ground
truth. For example, observe that for any graph we can attempt to fill in its missing edges by
assigning them weights according to their shortest path distance. Thus naively one could
attempt to fix the input graph, by solving MVD/SMR on this complete graph, and afterwards
dropping any selected edges that were not in the original graph. Figure 1.2 shows that doing
so, however, can produce radically different and sub-optimal solutions.

Thus to appropriately capture this more general problem, we define the Graph Metric
Repair problem as the natural graph theoretic generalization of the MVD and SMR problems:

Given a positively weighted undirected graph G = (V,E,w) and a set Ω ⊆ R, find the
smallest set of edges S ⊆ E such that by modifying the weight of each edge in S, by
adding a value from Ω, the new distances satisfy a metric.

The additional graph structure introduced in the generalized problem lets us incorporate
different types of relationships amongst data points and gives us more flexibility in its

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:3

Figure 1.2 Original graph is the four solid green edges of weight 1, and two dashed red edges of
weight 4. Added blue dotted edges all have weight 2. The original graph is repaired by increasing the
lower left green edge, but the optimal solution in the complete graph decreases the two red edges.

structure, and hence avails itself to be applicable to a richer class of problems. This
general graph structure also elucidates the deep connections to cutting problems, which
underlie several results in this paper, and which were not previously observed in [9, 10]. In
particular, as discussed below, our problem is closely related to MULTICUT (Problem 4.1),
a generalization of the standard s-t cut problem to multiple s-t pairs, as well as LB-CUT
(Problem 4.2), where only s-t paths with lengths up to a given threshold L must be cut.

It should also be noted that Graph Metric Repair, as well as MVD and SMR, are related
to a large number of other previously studied problems. A short list includes: metric nearness,
seeking the metric minimizing the sum of distance value changes [5]; metric embedding with
outliers, seeking the fewest points whose removal creates a metric [14]; matrix completion,
seeking to fill missing matrix entries to produce a low rank [6]; and many more. See [9] for a
more detailed discussion of these and other problems.

Contributions and Results: The main contributions of this paper are as follows:

We transition all previously known structural results about SMR and MVD to the new
graph theoretic version. In particular, we provide a characterization for the support
of solutions to the increase (Ω = R≥0) and general (Ω = R) versions of the problem.
Furthermore, we provide a new structural result showing that the increase only problem
reduces to the general one, where it is unknown if such a result holds for SMR and MVD.
For any fixed constant ς, by parameterizing on the size of the optimal solution, we present
a fixed parameter tractable algorithm for the case when G is ς-chordal. This not only
answers an open question posed by [9] for complete graphs, but significantly extends it to
the larger ς-chordal case (see [7] for characterizations of such graphs, many of which are
the complements of a variety of families of graphs). Moreover, we get an upper bound on
the number of optimal supports, as each one is seen by some branch of the algorithm.
We give polynomial-time approx-preserving reductions from MULTICUT and LB-CUT to
graph metric repair. This connection to the well studied MULTICUT problem is interesting
in its own right, but by [8] it also implies graph metric repair is NP-hard, and cannot be
approximated within any constant factor assuming the Unique Games Conjecture (UGC).
We give approximation algorithms, parameterized by different measures of how far the
input is from a metric. Significantly, our approximations mirror our hardness results. Call
a cycle broken if it contains an edge whose weight is larger than the sum of all its other
edges, and call the amount of this difference its deficit. We give an L-approximation,
where L is the maximum number of edges in a broken cycle, while LB-CUT gives Ω(

√
L)-

hardness. We give an O(κ logn)-approximation, where κ is the number of distinct cycle
deficit values, while in general the best known approximation for MULTICUT is O(logn).

SWAT 2020

24:4 Generalized Metric Repair on Graphs

Finally, we give improved analysis of previous algorithms for the complete graph case.
To keep the focus on our main results, this entire section has been moved to Appendix C.

2 Preliminaries

2.1 Notation and problem definition

Let us start by defining some terminology. Throughout the paper, the input is an undirected
and weighted graph G = (V,E,w). A subgraph C = (V ′, E′) is called a k-cycle if |V ′| =
|E′| = k, and the subgraph is connected with every vertex having degree exactly 2. We often
overload this notation and use C to denote either the cyclically ordered list of vertices or
edges from this subgraph. Let C \ e denote the set of edges of C after removing the edge e,
and π(C \ e) denote the corresponding induced path between the endpoints of e.

A cycle C is broken if there exists an edge h ∈ C such that w(h) >
∑
e∈C\h w(e). In

this case, we call the edge h the heavy edge of C, and all other edges of C are called light
edges. We call a set of edges a light cover if it contains at least one light edge from each
broken cycle. Similarly, we call it a regular cover if it contains at least one edge from
each broken cycle. We say that a weighted graph G = (V,E,w) satisfies a metric if there
are no broken cycles. Finally, let Symn(Ω) be the set of n × n symmetric matrices with
entries drawn from Ω ⊆ R. Note that the weight function w can be viewed as an n × n
symmetric matrix (missing edges get weight ∞), and thus for any W ∈ Symn(Ω), the matrix
sum w +W defines a new weight function. Now we can define the generalized graph metric
repair problem as follows. In the following, ‖W‖0 is the number of non-zero entries in the
matrix W , i.e., the `0 pseudonorm when viewing the matrix W as a vector.

I Problem 2.1. Given Ω ⊆ R and a positively weighted graph G = (V,E,w) we want to find

arg min
W∈Sym(Ω)

‖W‖0 such that G = (V,E,w +W) satisfies a metric, or return NONE,

if no such W exists. Denote this problem as graph metric repair or MR(G,Ω).

A matrix W is an optimal solution if it realizes the arg min in the above, and is a solution
(without the optimal prefix) if G = (V,E,w+W) satisfies a metric, but ‖W‖0 is not required
to be minimum. The support of a matrix W ∈ Sym(Ω), denoted SW , is the set of edges
corresponding to non-zero entries in W . As we will see in Proposition 7, given a support for a
solution W , we can easily find satisfying entries. Thus, the main difficulty lies in finding the
support. Throughout we use OPT to denote the size of the support of an optimal solution.

We also need the following basic graph theory definitions: Kn is the complete graph
on n vertices. Cn is the cycle n vertices. A chord of a cycle is an edge connecting two
non-adjacent vertices. For a given value ς, a graph G is called a ς-chordal if the size of the
largest chordless cycle in G is ≤ ς.

Let the deficit of a broken cycle C, denoted δ(C), be the weight of its heavy edge minus
the sum of the weights of all other edges in C. Similarly, δ(G) denotes the maximum of δ(C)
over all broken cycles. Finally, let L+ 1 be the maximum number of edges in a broken cycle
(i.e., L counts the light edges). Note δ and L are both parameters measuring the extent to
which cycles are broken, δ with respect to weights and L with respect to the number of edges.

In several places we compute all pairs shortest paths (APSP). Let TAPSP denote the time
to do so, where TAPSP = O(mn+ n2 logn) using Dijkstra’s algorithm and Fibonacci heaps.

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:5

2.2 Previous results
Fan et al. [9] and Gilbert and Jain [10] studied the special case of MR(G,Ω) where G = Kn.
Three sub-cases based on Ω were considered, namely Ω = R≤0 (decrease only), R≥0 (increase
only), and R (general). Various structural, hardness, and algorithmic results were presented
for these cases. In particular, the major results from these previous works are as follows.
(Note the notation and terminology here differs slightly from [9, 10].)

I Theorem 1. [9, 10] The problem MR(Kn,R≤0) can be solved in O(TAPSP) time.

I Theorem 2. [9] For a complete positively weighted graph Kn = (V,E,w) and S ⊆ E:
1. S is a regular cover if and only if S is the support to a solution to MR(Kn,R).
2. S is a light cover if and only if S is the support to a solution to MR(Kn,R≥0).

I Theorem 3. [9, 10] Given the support S of a solution to MR(Kn,R≥0) or MR(Kn,R), in
polynomial time one can find a weight assignment to the edges in S which is a solution.

[10] Moreover, for MR(Kn,R≥0), if Kn−S is connected, then for any edge uv ∈ S, setting
the weight of uv to be the shortest distance between u and v in Kn−S is a solution.

I Theorem 4. [9] The problems MR(Kn,R≥0) and MR(Kn,R) are APX-Complete, and
moreover permit O(OPT 1/3) approximation algorithms.

3 Transitioning to Graph Metric Repair

In this section we generalize Theorems 1, 2, and 3 to the case when G is any graph, and
additionally show that for general graphs MR(G,R≥0) reduces to MR(G,R). Subsequently, in
the later sections of paper, we provide a number of new stronger hardness and approximation
results for MR(G,R≥0) and MR(G,R) for general graphs, as well as an FPT algorithm
for ς-chordal graphs, in effect generalizing and strengthening Theorem 4, and answering
previously unresolved questions.

For MR(G,R≤0) we have the following generalization of Theorem 1. Moreover, we observe
the hardness proof of [9] implies if weights are allowed to increase even by a single value,
the problem is APX-Complete. The proof of the theorem below follows fairly directly from
previous work, and so has been moved to Appendix A.1, which contains additional corollaries.

I Theorem 5. The problem MR(G,R≤0) can be solved in O(TAPSP) time.
Moreover, the problem becomes hard if even a single positive value is allowed. That is, if

0 ∈ Ω and Ω ∩ R>0 6= ∅ then MR(G,Ω) is APX-Complete.

3.1 Structural results
Theorem 2 suggests that the problem is mostly combinatorial in nature. We shall see that,
in general, the difficult part of the problem is finding the support of an optimal solution.
Next, we present a characterization of the support of all solutions to the graph metric repair
problem, generalizing Theorems 2, 3. It should be noted that the proof of the following is
significantly simpler than the proof of Theorem 2 in [9]. The key insight is:

(i) If the shortest path between two adjacent vertices is not the edge connecting them, then
this edge is the heavy edge of a broken cycle.

I Theorem 6. For any positively weighted graph G = (V,E,w) and S ⊆ E:
1. S is a regular cover if and only if S is the support to a solution to MR(G,R).

SWAT 2020

24:6 Generalized Metric Repair on Graphs

2. S is a light cover if and only if S is the support to a solution to MR(G,R≥0).

Proof. First, assume that S is the support of a solution to MR(G,R) (MR(G,R≥0)). Suppose
C is a broken cycle in G. If S does not contain any (light) edges from C, then changing
(increasing) the weights on S could not have fixed C. Hence, S must be a regular (light)
cover thus proving the “if” direction of both parts of the theorem.

For the “only if” direction, we are given a regular (light) cover S ⊆ E which we use to
define a graph Ĝ = (V,E \ S,w). Note that since S is either a regular or light cover, S
contains at least one edge from all broken cycles of G. Thus, since Ĝ is G with the edges
of S removed, Ĝ has no broken cycles. Therefore, the shortest path between all adjacent
vertices in Ĝ is the edge connecting them.

Now we define another graph G′ = (V,E,w′) where w′(e) = w(e) for all e ∈ E \ S and
for all e ∈ S, w′(e) is the length of the shortest path between its end points in Ĝ or ‖w‖∞
(the maximum edge weight in Ĝ) if no path exists.

To prove 1., it suffices to show G′ satisfies a metric, since G′ is G with only weights from
edges in S modified. For any edge e ∈ E, if w′(e) is the shortest path between its nodes in G′
then e is not a heavy edge in G′. Therefore, edges that are in both G′ and Ĝ and edges that
are in G′ whose weight was set to length of the shortest path between its end points in Ĝ are
not heavy edges. Thus, we only need to look at edges in G′ whose weight is ‖w‖∞. These are
edges that connect two disconnected components in Ĝ. Thus, any cycle in G′ with such an
edge must involve another edge between components which also has weight ‖w‖∞. However,
a cycle with two edges of maximum weight cannot be broken, and thus such edges cannot be
heavy in G′. Therefore, there are no heavy edges in G′, and so G′ satisfies a metric.

To prove 2., it now suffices to show that for all e ∈ E, we have that w′(e) ≥ w(e). For all
e ∈ E \ S, we know that w′(e) = w(e). Now, suppose for contradiction that for some e ∈ S,
we have w′(e) < w(e). Note if we set w′(e) = ‖w‖∞, then we cannot have w′(e) < w(e).
Thus, w′(e) must be the weight of the shortest path between the end points of e in Ĝ. Let P
be this shortest path in Ĝ. This implies G has a broken cycle C = P ∪ {e} for which e is the
heavy edge. Since S is a light cover, it has a light edge from each broken cycle. So, S must
have a light edge from C, but then P could not have existed in Ĝ, a contradiction. Hence,
w′(e) ≥ w(e) and we have an increase only solution with such a set S. J

Furthermore, given a weighted graph G and a potential support SW for a solution W , in
O(TAPSP) time we can determine if there exists a valid (increase only or general) solution
on that support, and if so, find one. This is a generalization of Theorem 3, interestingly
improving upon the linear programming approach of [9]. Its proof is related to the above
theorem, and again uses insight (i), though due to space has been moved to Appendix A.2.

Algorithm 1 Verifier

1: function Verifier(G = (V,E,w), S)
2: M = ‖w‖∞, Ĝ = (V,E, ŵ)
3: For each e ∈ S set ŵ(e) = M and for each e ∈ E \ S, set ŵ(e) = w(e)
4: For each (u, v) ∈ E, update w(u, v) to be length of the shortest path from u to v in Ĝ
5: if Only edges in S had weights changed (or increased for increase only case) then
6: return w

7: else
8: return NULL

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:7

I Proposition 7. The Verifier algorithm, given a weighted graph G and a potential support
for a solution S, determines in O(TAPSP) time whether there exists a valid (increase only or
general) solution on that support and if so finds one.

3.2 Reducing MR(G,R≥0) to MR(G,R)
We now show that MR(G,R≥0) reduces to MR(G,R). In later sections, this lets us focus on
MR(G,R) for our algorithms and MR(G,R≥0) for our hardness results. Note that whether
an analogous statement holds for the previously studied G = Kn case, is not known, and the
following does not immediately imply this as it does not construct a complete graph.

I Theorem 8. There is an approximation-preserving, polynomial-time reduction from
MR(G,R≥0) to MR(G,R).

Proof. Let G = (V,E,w) be an instance of MR(G,R≥0). Find the set H = {(s1, t1), . . . ,
(s|H|, t|H|)} of heavy edges of all broken cycles by comparing the weight of each edge to the
shortest path distance between its endpoints. We now construct an instance, G′ = (V ′, E′, w),
of MR(G,R). For all 1 ≤ i ≤ |H| and 1 ≤ j ≤ |E|+1, let Q = {vij}i,j be a vertex set, and let
Fl = {(si, vij)}i,j and Fr = {(ti, vij)}i,j be edge sets. Let V ′ = V ∪Q and E′ = E ∪ Fl ∪ Fr,
where all (si, vij) edges in Fl have weight Z = 1 + maxe∈E w(e), and for any i all (ti, vij)
edges in Fr have weight Z − w((si, ti)).

Let C be any broken cycle in G with heavy edge (si, ti) for some i. First, observe that
C ′ = (C \ (si, ti)) ∪ {(si, vij), (ti, vij)} is a broken cycle with heavy edge (si, vij), for any j.
To see this, note that w((si, vij)) = Z = w((ti, vij)) + w((si, ti)). Thus since C is broken,

w((si, vij)) = w((ti, vij)) + w((si, ti)) > w((ti, vij)) + w(C \ (si, ti)),

and thus by definition C ′ is broken with heavy edge (si, vij). Hence each broken cycle C in
G, with heavy edge (si, ti), corresponds to |E|+ 2 broken cycles in G′, namely, C itself and
the cycles obtained by replacing (si, ti) with a pair (si, vij), (ti, vij), for any j.

We now show the converse, that any broken cycle C ′ in G′ is either also a broken cycle C
in G, or obtained from a broken cycle C in G by replacing (si, ti) with (si, vij), (ti, vij) for
some j. First, observe that for any i, any cycle containing the edge (si, vij) must also contain
the edge (ti, vij), and moreover, if a cycle containing such a pair is broken, then its heavy edge
must be (si, vij) as w((si, vij)) = Z. Similarly, any cycle containing more than one of these
pairs of edges (over all i and j) is not broken, since such cycles then would contain at least
two edges with the maximum edge weight Z. So let C ′ be any broken cycle containing exactly
one such (si, vij), (ti, vij) pair. Note that C ′ cannot be the cycle ((si, vij), (ti, vij), (si, ti)),
as this cycle is not broken because w((si, vij)) = w((ti, vij)) + w((si, ti)). Thus, C =
C ′ \ {(si, vij), (ti, vij)} ∪ {(si, ti)} is a cycle, and C ′ being broken implies C is broken with
heavy edge (si, ti), implying the claim. This holds since

w(si, ti) = w((si, vij))− w((ti, vij)) > w(C ′ \ (si, vij))− w((ti, vij)) = w(C \ (si, ti)).

Now consider any optimal solution M to the MR(G,R≥0) instance G, which by Theorem
6 we know is a minimum cardinality light cover of G. By the above, we know that M is
also a light cover of G′, and hence is also a regular cover of G′. Thus by Theorem 6, M is
a valid solution to the MR(G,R) instance. Conversely, consider any optimal solution M ′
to the MR(G,R) instance G′, which by Theorem 6 is a minimum cardinality regular cover
of G′. The claim is that M ′ is also a light cover of G, and hence is a valid solution to the
MR(G,R≥0) instance. To see this, observe that since all broken cycles in G are broken cycles

SWAT 2020

24:8 Generalized Metric Repair on Graphs

in G′, M ′ must be a regular cover of all broken cycles in G, and we now argue that it is in
fact a light cover. Specifically, consider all the broken cycles in G which have a common
heavy edge (si, ti). Suppose there is some cycle in this set, call it C, which is not light
covered by M ′. As M ′ is a regular cover for G′, this implies that for any j, the broken
cycle described above determined by removing the edge (si, ti) from C and adding edges
(si, vij) and (ti, vij), must be covered either with (si, vij) or (ti, vij). However, as j ranges
over |E|+ 1 values, and these edge pairs have distinct edges for different values of j, M ′ has
at least |E|+ 1 edges. This is a clear contradiction with M ′ being a minimum sized cover, as
any light cover of G is a regular cover of G′, and G only has |E| edges in total. J

4 Hardness

Previously, [9] gave an approximation-preserving reduction from Vertex Cover to both
MR(Kn,R) and MR(Kn,R≥0). Thus, both are APX-complete, and in particular are hard to
approximate within a factor of 2− ε for any ε > 0, assuming UGC [11]. Since these hardness
results were proven for complete graphs, they also immediately apply to the general problems
MR(G,R) and MR(G,R≥0). Here we give stronger hardness results for MR(G,R≥0) and
MR(G,R) by giving approximation-preserving reductions from MULTICUT and LB-CUT.

I Problem 4.1 (MULTICUT). Given an undirected unweighted graph G = (V,E) on n = |V |
vertices together with k pairs of vertices {si, ti}ki=1, compute a minimum size subset of edges
M ⊆ E whose removal disconnects all the demand pairs, i.e., in the subgraph (V,E \M)
every si is disconnected from its corresponding vertex ti.

Chawla et al. [8] proved that if UGC is true, then it is NP-hard to approximate MULTI-
CUT within any constant factor L > 0, and assuming a stronger version of UGC, within
Ω(
√

log logn). (The MULTICUT version in [8] allowed weights, but they remark their hardness
proofs extend to the unweighted case.)

I Theorem 9. There is an approximation-preserving, polynomial-time reduction from MUL-
TICUT to MR(G,R≥0).

Proof. Let G = (V,E) be an instance of MULTICUT with k pairs of vertices {si, ti}ki=1.
First, if (si, ti) ∈ E for any i, then that edge must be included in the solution M . Thus, we
can assume no such edges exists in the MULTICUT instance, as assuming this can only make
it harder to approximate the optimum value of the MULTICUT instance. We now construct
an instance of MR(G,R≥0), G′ = (V ′, E′, w). Let V ′ = V and E′ = E ∪ {si, ti}ki=1 where
the edges in E have weight one and the edges (si, ti), for all i ∈ [k], have weight n = |V |.

If a cycle in G′ has exactly one edge of weight n, then it must be broken since there can
be at most n− 1 other edges in the cycle. Conversely, if a cycle C has no edge or more than
one edge with weight n, then C does not have a heavy edge, and so is not broken.

Note that the edges from G are exactly the weight one edges in G′, and thus, the paths
in G are in one-to-one correspondence with the paths in G′ which consist of only weight
one edges. Moreover, the weight n edges in G′ are in one-to-correspondence with the (si, ti)
pairs from G. Thus, the cycles in G′ with exactly one weight n edge followed by paths of
all weight one edges connecting their endpoints, which by the above are exactly the set of
broken cycles, are in one-to-one correspondence with paths between (si, ti) pairs from G.
Therefore, a minimum cardinality subset of edges which light cover all broken cycles, i.e., an
optimal MR(G,R≥0) support, corresponds to a minimum cardinality subset of edges from E

which cover all paths from si to ti for all i, i.e., an optimal solution to MULTICUT. J

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:9

I Problem 4.2 (LB-CUT). Given a value L and an undirected unweighted graph G = (V,E)
with source s and sink t, find a minimum size subset of edges M ⊆ E such that no s-t-path
of length less than or equal to L remains in the graph after removing the edges in M .

An instance of LB-CUT with length L, is referred to as an instance of L-LB-CUT. For any
fixed L, Lee [12] showed that it is hard to approximate L-LB-CUT within a factor of Ω(

√
L).

Using a similar reduction as above, we argue the following.

I Theorem 10. For any fixed value L, there is an approximation-preserving, polynomial-time
reduction from L-LB-CUT to MR(G,R≥0).

Proof. Let G = (V,E) be an instance of L-LB-CUT with source s and sink t. First, if
(s, t) ∈ E, then that edge must be included in the solution M . Thus we can assume that
edge is not in the LB-CUT instance, as assuming this can only make it harder to approximate
the optimum value of the LB-CUT instance. We now construct an instance of MR(G,R≥0),
G′ = (V ′, E′, w). Let V ′ = V and E′ = E ∪ {(s, t)} where the edges in E have weight 1 and
the edge (s, t) has weight L+ 1.

First, observe that any cycle containing the edge (s, t) followed by ≤ L unit weight edges
is broken, as the sum of the unit weight edges will be < L+ 1 = w((s, t)). Conversely, any
broken cycle must contain the edge (s, t) followed by ≤ L unit weight edges. Specifically, if a
cycle does not contain (s, t) then it is unbroken since all edges would then have weight 1.
Moreover, if a cycle contains (s, t) and > L other edges, then the total sum of those unit
edges will be ≥ L+ 1 = w((s, t)).

Note that the edges from G are exactly the weight one edges in G′, and thus the paths in
G are in one-to-one correspondence with the paths in G′ which consist of only weight one
edges. Moreover, the edge (s, t) in G′ corresponds with the source and sink from G. Thus
by the above, the broken cycles in G′ are in one-to-one correspondence with s-t-paths with
length ≤ L in G. Therefore, a minimum cardinality subset of edges which light cover all
broken cycles, i.e., an optimal support to MR(G,R≥0), corresponds to a minimum cardinality
subset of edges from E which cover all paths from s to t of length ≤ L, i.e., an optimal
solution to LB-CUT. J

In the L-LB-CUT to MR(G,R≥0) reduction of Theorem 10, one edge (the s, t pair)
has weight L + 1 and all other edges have unit weight. Moreover, in the reduction from
MR(G,R≥0) to MR(G,R) of Theorem 8, the max edge weight increases by 1. Thus, by these
reductions, and previous hardness results, we have the following summarizing theorem.

I Theorem 11. MR(G,R≥0) and MR(G,R) are APX-complete, and moreover assuming
UGC neither can be approximated within any constant factor.

For any positive integer L, consider the problem defined by the restriction of MR(G,R)
to integer weight instances with maximum edge weight L and minimum edge weight 1, or the
further restriction of MR(G,R≥0) to instances where all weights are 1 except for a single
weight L edge. Then assuming UGC these problems are hard to approximate within Ω(

√
L).

5 Fixed Parameter Analysis for ς-Chordal Graphs

Let ς be a fixed constant, and let Fς be the family of all ς-chordal graphs. Here we provide
an FPT for MR(G,R) for any G ∈ Fς , parameterized on the optimal solution size OPT .

By Theorem 6, we seek a minimum sized cover of all broken cycles. First, we argue below
that if G has a broken cycle, then it has a broken chordless cycle. This seems to imply a
natural FPT algorithm for constant ς. Namely, find an uncovered broken chordless cycle and

SWAT 2020

24:10 Generalized Metric Repair on Graphs

recursively try adding each one of its edges to our current solution.∗ However, it is possible
to cover all broken chordless cycles while not covering the broken chorded cycles. These
cycles are difficult to cover as they may be much larger than ς, though again by Theorem 6
they must be covered.

Consider an optimal solution W , with support SW . Suppose that we have found a subset
S (SW , covering all broken chordless cycles in G. Intuitively, if we add to each edge in S
its weight from W , then any remaining broken chordless cycle must be covered further, in
effect revealing which edges to consider from the chorded cycles from the original graph G.
The challenge, however, is of course that we don’t know W a priori. We argue that despite
this one can still identify a bounded sized subset of edges containing an edge from a cycle
needing to be covered further.

I Lemma 12. If G has a broken cycle, then G has a broken chordless cycle.

Proof. Let C = v1, . . . , vk be the broken cycle in G with the fewest edges, with v1vk being
the heavy edge. If C is chordless, then the claim holds. Otherwise, this cycle has at least
one chord vivj . Now there are two paths P1 and P2 from vi to vj on the cycle. Let P1
be the path containing the heavy edge of C. If w(vi, vj) >

∑
e∈P2

w(e), then P2 together
with the edge vivj defines a broken cycle with fewer edges than C. On the other hand, if
w(vi, vj) ≤

∑
e∈P2

w(e) then P1 together with the edge vivj defines a broken cycle with fewer
edges than C. In either case we get a contradiction as C was the broken cycle with the
fewest edges. J

Our FPT is shown in Algorithm 2, where we recursively build a potential support S up to
our current guess at the optimal size k. The following lemma is key to arguing correctness.

I Lemma 13. Consider any optimal solution W and its support SW to an instance of metric
repair for G = (V,E,w) ∈ Fς . If S (SW , then F (G,S,OPT) adds at least one edge in
SW \ S to P .

Proof. Consider the auxiliary graph GS = (V,E, w̃), which has the same vertex and edge
sets as G, but with the modified weight function:

w̃ =
{
w(e) e 6∈ S
W (e) + w(e) e ∈ S

Since S (SW , we have that GS has a broken cycle. Thus, by Lemma 12, GS has a chordless
broken cycle. Suppose there is a chordless broken cycle in GS that is edge disjoint from S

(which occurs if and only if it is also broken in G), in which case, line 4 finds such a cycle.
As this is a broken cycle, it must be covered by some edge in SW \ S, and thus, we have
added some edge in SW \ S to P .

Let us assume otherwise, that any chordless broken cycle in GS has non-empty intersection
with S. Let C be any such chordless broken cycle with C ∩ S 6= ∅. Observe that as C is
broken in GS , it must be that |C ∩ S| < |C|, as otherwise it would imply W was not a
solution. Thus, as G ∈ Fς , we know that |C| ≤ ς, and so |C ∩ S| < ς. This implies in some
for loop iteration, C ∈ C on line 7.

Let h be the heavy edge, in GS , of the broken cycle C. We now have two cases:

∗One might construe this as FPT kernelization. The edges of the broken chordless cycles do form a
kernel but its size is not bounded in our parameter. As an example, take G = Kn, set one edge weight to
n + 1, and all other weights to 1. There are 2n− 3 edges in the kernel while the optimal solution has size 1.

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:11

Algorithm 2 FPT

1: function F(G,S, k)
2: if |S| = k then return verifier(G,S)
3: P = ∅
4: if there exists a broken chordless cycle C such that C ∩ S = ∅ then P = C

5: else
6: for s ⊆ S such that |s| ≤ ς − 1 do
7: Let C = {Chordless cycles C such that C ∩ S = s}
8: C1 ← arg minC∈C

∑
e∈C\s w(e)

9: C2 ← arg maxC∈C w(h)−
∑
e∈C\(s∪{h}) w(e), where h = arg maxf∈C\s w(f)

10: Add (C1 ∪ C2) \ S to P
11: for e ∈ P do
12: X = F(G,S ∪ {e}, k)
13: if X 6= NULL then return X

14: return NULL

15: function FPTWrapper(G)
16: for k = 1, 2, . . . do
17: X = F(G, ∅, k)
18: if X 6= NULL then return X

Case 1: h ∈ S. In this case we have that

W (h) + w(h) >
∑
e∈C\S

w(e)

︸ ︷︷ ︸
(1)

+
∑
e∈S

W (e) + w(e).

On line 8 we found a cycle C1 that minimized (1). Thus, since C is broken in GS , C1 is also
broken in GS , and so must be covered by some edge in SW \ S. Hence, we added some edge
in SW \ S to P .

Case 2 h 6∈ S. In this case h has the maximum weight of all edges in C \ s. We have that

w(h)−
∑

e∈C\(S∪{h})

w(e)

︸ ︷︷ ︸
(2)

>
∑
e∈S

W (e) + w(e).

On line 9 we found a cycle C2 maximizing (2). Thus, if C is broken in GS , then C2 is broken
in GS , and so must be covered by some edge in SW \ S. Hence, we added some edge in
SW \ S to P . J

I Lemma 14. Any time we call F , we have that |P | ≤ 2ς|S|ς

Proof. Note |P | is upper bounded by ς multiplied by the number of chordless cycles we add.
If the conditional on line 4 is true then we add only a single chordless cycle to P . Otherwise,
for each s ⊆ S such that |s| ≤ ς − 1 we find two cycles. There are at most

ς−1∑
i=1

(
|S|
i

)
≤

ς−1∑
i=1
|S|i ≤ |S|ς

many such subsets, and thus we add at most 2|S|ς many cycles, implying the claim. J

SWAT 2020

24:12 Generalized Metric Repair on Graphs

I Theorem 15. For any fixed constant ς, Algorithm 2 is an FPT algorithm for MR(G,R)
for any G ∈ Fς , when parameterized by OPT. The running time is Θ((2ςOPT ς)OPT+1nς).

Proof. FPTWrapper iteratively calls F (G, ∅, k) for increasing values of k until it returns a
non-Null value. First, we argue that while k < OPT , F (G, ∅, k) will return Null. In the
initial call to F , we have S = ∅. F then adds exactly one edge in each recursive call until
|S| = k, at which point it returns Verifier(G,S). Thus, as k < OPT , by proposition 7,
NULL is returned.

Now we argue that when k = OPT an optimal solution is returned. Fix any optimal
solution W and its support SW to the given instance G. By Lemma 13, if S (SW (which is
true initially as S = ∅) then at least one edge in SW \ S is added to P . Thus, as F makes a
recursive call to F (G,S ∪ {e}, k) for every edge e ∈ P , in at least one recursive call an edge
of SW is added to S. Thus there is some path in the tree of recursive calls to F in which
all k = OPT edges from SW are added, at which point F returns Verifier(G,S), which
returns an optimal solution by proposition 7. (Note this recursive call may not be reached, if
a different optimal solution is found first.)

Now we consider bounding the running time. Observe that in each call to F , a set P
is constructed, and then recursive calls to F (G,S ∪ {e}, k) are made for each e ∈ P . By
Lemma 14, |P | ≤ 2ς|S|ς ≤ 2ςkς at all times. So in the tree of all recursive calls made by any
initial call to F (G, ∅, k), the branching factor is always bounded by 2ςkς , and the depth is k.
Thus there are O((2ςkς)k) nodes in our recursion tree.

Now we bound the time needed for each node in the recursion tree. If Verifier is
called then it takes O(TAPSP) time by proposition 7. Otherwise, note that there are O(nς)
chordless cycles. Thus it takes O(ςnς) time to enumerate and check them on line 4. Similarly
|C| = O(nς) on line 7, and so the run time of each iteration of the for loop is O(ςnς). There
are O(|S|ς) = O(kς) iterations of the for loop, thus the total time per node is O(ςkςnς).

Thus the total time for each call to F (G, ∅, k) is O((2ςkς)kςkςnς) = O((2ςkς)k+1nς).
Since FPTWrapper calls F (G, ∅, k) for k = 1, . . . , OPT , the overall running time is

O

((
OPT∑
k=1

(2ςkς)k+1

)
· nς
)

= O((2ςOPT ς)OPT+1nς). J

As lemma 13 holds for any optimal solution, the bound on the recursion tree size in the
above proof actually bounds the number of optimal solutions.

I Corollary 16. If G ∈ Fς then there are at most (2ςOPT ς)OPT subsets S ⊂ E such that S
is the support of an optimal solution to MR(G,R).

I Remark 17. Using the approximation-preserving reduction from MR(G,R≥0) to MR(G,R)
in Theorem 8, the above also yields an FPT for MR(G,R≥0). This holds since the reduction
does not change the optimal solution size, nor ς as it only adds triangles. Alternatively, the
above algorithm can be carefully modified to consider light covering broken cycles.

6 Approximation Algorithms

In this section we present approximation algorithms for MR(G,R≥0) and MR(G,R).
By Theorem 6, the support of an optimal solution to MR(G,R) is a minimum cardinality

regular cover of all broken cycles. This naturally defines a hitting set instance (E, C), where
the ground set E is the edges from G, and C is the collection of the subsets of edges determined
by broken cycles. Unfortunately, constructing (E, C) explicitly is infeasible as there may be an

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:13

exponential number of broken cycles. In general just counting the number of paths in a graph
is #P-Hard [16], though it is known how to count paths of length up to roughly O(logn)
using color-coding. (See [1, 4] and references therein.) Moreover, observe our situation is
more convoluted as we wish to count only paths corresponding to broken cycles.

Despite these challenges, we argue there is sufficient structure to at least roughly apply
the standard greedy algorithms for hitting set. Our first key insight, related to insight (i), is:

(ii) One can always find some broken cycle, if one exists, by finding any edge whose weight is
more than the shortest path length between its endpoints (using APSP).

Thus we have a polynomial time oracle, returning an arbitrary set in C. Recall the greedy
algorithm for hitting set, which repeatedly picks an arbitrary uncovered set, and adds
all its elements to the solution. If L = maxc∈C |c| is the largest set size, this gives an L-
approximation, as each time we take the elements of a set, we get at least one element of the
optimal solution. Below we apply this approach to approximate MR(G,R) and MR(G,R≥0).

We would prefer, however, to have an oracle for the number of broken cycles that an
edge e ∈ E participates in as using such an oracle would yield an O(logn)-approximation
algorithm for MR(G,R) (regardless of the size of L) by running the standard greedy algorithm
for hitting set which repeatedly selects the element that hits the largest number of uncovered
sets. Towards this end, we have the following key insight:

(iii) We can find the most broken cycle (i.e., with maximum deficit) and, more importantly,
count how many such maximum deficit cycles each edge is in.

To argue that insight (iii) is true, first we observe that the cycle with the largest deficit
value corresponds to a shortest path. This in turn, argued over several lemmas, allows us to
quickly get a count when restricting to such cycles. Thus, if κ denotes the number of distinct
cycle deficit values, the above insight implies an O(κ logn)-approximation, by breaking the
problem into κ hitting set instances, where for each instance we can run the greedy algorithm.

6.1 L-approximation
In this section, we consider the problems defined by restricting MR(G,R) and MR(G,R≥0)
to the subset of instances where the largest number of light edges in a broken cycle is L. We
present an (L+ 1)-approximation algorithm for MR(G,R) which runs in O(TAPSP ·OPT)
time, which also will imply an L-approximation for MR(G,R≥0) with the same running time.

As mentioned above, the main idea comes from insight (ii). In particular, the following
algorithm, Short Path Cover (SPC), can be easily understood by viewing it as running
the standard L-approximation for the corresponding instance (E, C) of hitting set, where we
have an oracle for finding a set c ∈ C. In the following, APSP is a subroutine returning a
shortest path distance function d(u, v), and a function P (u, v) giving the set of edges along
any shortest path from u to v.

Algorithm 3 Short Path Cover (SPC) for MR(G,R)

1: function SPC(G = (V,E,w))
2: H = (VH = V,EH = E,wH = w)
3: while True do
4: d, P = APSP(H)
5: if ∃ e = (u, v) ∈ EH such that w(e) > d(u, v) then EH = EH \ (P (u, v) ∪ {e})
6: else return Verifier(G,E \ EH)

SWAT 2020

24:14 Generalized Metric Repair on Graphs

I Theorem 18. SPC gives an (L+ 1)-approximation for MR(G,R) in O(TAPSP ·OPT) time.

Proof. First, note that if there is a broken cycle in H, then for some edge e = (u, v),
w(e) > d(u, v), and moreover, in this case P (u, v) ∪ {e} is a broken cycle. Thus, when the
algorithm terminates there are no broken cycles in H. Also, for any broken cycle in G, if all
of its edges are still in H, then it will be a broken cycle in H. Thus, when the algorithm
terminates at least one edge from each broken cycle in G is in E \ EH , which by Theorem 6
implies E \ EH is a valid support.

Note that removing edges does not create any new broken cycles, thus, any broken cycle
in H is also a broken cycle in G. Thus, the support of any optimum solution must contain
at least one edge from each broken cycle in H (again by Theorem 6), and so every time we
remove the edges of a broken cycle P (u, v) ∪ {e}, we remove at least one optimum edge. As
the largest broken cycle length is L+ 1, this implies overall we get an (L+ 1)-approximation.
The same argument implies the while loop can get executed at most OPT times, and as
APSP takes O(TAPSP) time, and line 5 takes O(m) time, we obtain the running time in the
theorem statement. J

I Remark 19. If we modify SPC so that in line 5 we only remove P (u, v) from EH (rather
than P (u, v) ∪ {e}), then by the second part of Theorem 6, the same argument implies that
SPC is an L-approximation for MR(G,R≥0) that runs in O(TAPSP ·OPT) time.
I Remark 20. Theorem 11 restricts MR(G,R≥0) and MR(G,R) to integer instances with
max weight L, implying any broken cycle has ≤ L edges. As this is a subset of the instances
here, SPC is an L or L+ 1 approx for instances that are hard to approximate within Ω(

√
L).

6.2 O(κ log n)-approximation
Using insight (iii), our approach is to iteratively cover cycles by decreasing deficit value,
ultimately breaking the problem into multiple hitting set instances. We present the algorithm
for MR(G,R) first and then remark on the minor change needed to apply it to MR(G,R≥0).

For any pair of vertices s, t ∈ V , let d(s, t) denote their shortest path distance in G, and
#sp(s, t) denote the number of shortest paths from s to t. It is straightforward to show that
#sp(s, t) can be computed in O(m+ n) time given all d(u, v) values have been precomputed.

I Lemma 21 (Proof in Appendix B). Let G be a positively weighted graph, where for all
pairs of vertices u, v one has constant time access to the value d(u, v). Then for any pair of
vertices s, t, the value #sp(s, t) can be computed in O(m+ n) time.

Recall that for a broken cycle C with heavy edge h, the deficit of C is δ(C) = w(h)−∑
e∈(C\h) w(e). Moreover, δ(G) denotes the maximum deficit over all cycles in G. For any

edge e, define Nh(e, α) to be the number of distinct broken cycles of deficit α whose heavy
edge is e. Similarly, let Nl(e, α) denote the number of distinct broken cycles with deficit α
which contain the edge e, but where e is not the heavy edge. While for general α it is not
clear how to even approximate Nl(e, α) and Nh(e, α), we argue that when α = δ(G) these
values can be computed exactly.

I Lemma 22. For any edge e = (s, t), if w(e) = d(s, t) + δ(G) then Nh(e, δ(G)) = #sp(s, t),
and otherwise Nh(e, δ(G)) = 0.

Proof. If w(e) 6= d(s, t) + δ(G), then as δ(G) is the maximum deficit over all cycles, it must
be that w(e) < d(s, t) + δ(G), which in turn implies any broken cycle with heavy edge e has
deficit strictly less than δ(G). Now suppose w(e) = d(s, t) + δ(G), and consider any path ps,t

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:15

from s to t such that e together with ps,t creates a broken cycle with heavy edge e. If ps,t is
a shortest path then w(e)− w(ps,t) = w(e)− d(s, t) = δ(G), and otherwise w(ps,t) > d(s, t)
and so w(e)− w(ps,t) < w(e)− d(s, t) = δ(G). Thus Nh(e, δ(G)) = #sp(s, t) as claimed. J

As G is undirected, every edge e ∈ E correspond to some unordered pair {a, b}. However,
often we write e = (a, b) as an ordered pair, according to some fixed arbitrary total ordering
of all the vertices. We point this out to clarify the following statement.

I Lemma 23. Fix any edge e = (s, t), and let X = {f = (a, b) | w(f) = d(a, s) + w(e) +
d(t, b) + δ(G)}, and Y = {f = (a, b) | w(f) = d(b, s) + w(e) + d(t, a) + δ(G)}. Then

Nl(e, δ(G)) =

 ∑
(a,b)∈X

#sp(a, s) ·#sp(t, b)

+

 ∑
(a,b)∈Y

#sp(b, s) ·#sp(t, a)

 .

Proof. Consider any broken cycle C containing e = (s, t), with heavy edge f = (a, b) and
where δ(C) = δ(G). Such a cycle must contain a shortest path between a and b, as otherwise
it would imply δ(G) > δ(C). Now if we order the vertices cyclically, then the subset of
C’s vertices {a, b, s, t}, must appear either in the order a, s, t, b or b, s, t, a. In the former
case, as the cycle must use shortest paths, w(f) = d(a, s) + w(e) + d(t, b) + δ(G), and
the number of cycles satisfying this is #sp(a, s) · #sp(t, b). In the latter case, w(f) =
d(b, s) +w(e) + d(t, a) + δ(G), and the number of cycles satisfying this is #sp(b, s) ·#sp(t, a).
Note also that the set X from the lemma statement is the set of all f = (a, b) satisfying the
equation in the former direction, and Y is the set of all f = (a, b) satisfying the equation in
the later direction. Thus summing over each relevant heavy edge in X and Y , of the number
of broken cycles of deficit δ(G) which involve that heavy edge and e, yields the total number
of broken cycles with deficit δ(G) containing e as a light edge. J

I Corollary 24 (Appendix B). Given constant time access to d(u, v) and #sp(u, v) for any
vertices u and v, Nh(e, δ(G)) can be computed in O(1) time and Nl(e, δ(G)) in O(m) time.

Algorithm 4 Finds a valid solution for MR(G,R).

1: function Approx(G = (V,E,w))
2: Let S = ∅
3: while True do
4: For every pair s, t ∈ V compute d(s, t)
5: Compute δ(G) = maxe=(s,t)∈E w(e)− d(s, t)
6: if δ(G) = 0 then return Verifier(G,S)
7: For every edge (s, t) ∈ E compute #sp(s, t)
8: For every e ∈ E compute count(e) = Nh(e, δ(G)) +Nl(e, δ(G))
9: Set f = arg maxe∈E count(e)
10: Update S = S ∪ {f} and G = G \ f

I Theorem 25. For any positive integer κ, consider the set of MR(G,R) instances where
the number of distict deficit values is at most κ, i.e., |{δ(C) | C is a cycle in G}| ≤ κ. Then
Algorithm 4 gives an O((TAPSP +m2) ·OPT · κ logn) time O(κ logn)-approximation.

Proof. Observe that the algorithm terminates only when δ(G) = 0, i.e., only once there are
no broken cycles left. As no new edges are added, and weights are never modified, this implies

SWAT 2020

24:16 Generalized Metric Repair on Graphs

that when the algorithm terminates it outputs a valid regular cover S. (The algorithm must
terminate as every round removes an edge.) Therefore, by Theorem 6, S is a valid MR(G,R)
support, and so we only need to bound its size.

Let the edges in S = {s1, . . . , sk} be indexed in increasing order of the loop iteration
in which they were selected. Let G1, . . . , Gk+1 be the corresponding sequence of graphs
produced by the algorithm, where Gi = G \ {s1, . . . , si−1}. Note that for all i, Gi = (V,Ei)
induces a corresponding instance of hitting set, (Ei, Ci), where the ground set is the set of
edges from the MR(G,R) instance Gi, and Ci = {Ei(C) | C is a broken cycle in Gi} (where
Ei(C) is the set of edges in C).

Let D = {δ(C) | C is a cycle in G}, where by assumption |D| ≤ κ. Note that any
cycle C in any graph Gi, is also a cycle in G. Thus as we never modify edge weights,
δ(G1), . . . , δ(Gk+1) is a non-increasing sequence. Moreover X = {δ(Gi)}i ⊆ D, and in
particular |X| ≤ κ. For a given value δ ∈ X, let Gα, Gα+1, . . . , Gβ be the subsequence of
graphs with deficit δ (which is consecutive as the deficit values are non-increasing). Observe
that for all α ≤ i ≤ β, the edge si is an edge from a cycle with deficit δ = δ(Gi). So for each
α ≤ i ≤ β, define a sub-instance of hitting set (E′i, C′i), where E′i is the set of edges in cycles
of deficit δ from Gi, and C′i is the family of sets of edges from each cycle of deficit δ in Gi.

The claim is that for the hitting set instance (E′α, C′α), that {sα, . . . , sβ} is an O(logn)
approximation to the optimal solution. To see this, observe that for any α ≤ i ≤ β in line
8, count(e) is the number of times e is contained in a broken cycle with deficit δ = δ(Gi),
as by definition Nh(e, δ(Gi)) and Nl(e, δ(Gi)) count the occurrences of e in such cycles as
a heavy edge or light edge, respectively. Thus si is the edge in E′i which hits the largest
number of sets in C′i, and moreover, (E′i+1, C′i+1) is the corresponding hitting set instance
induced by removing si and the sets it hit from (E′i, C′i). Thus {sα, . . . , sβ} is the resulting
output of running the standard greedy hitting set algorithm on (E′α, C′α) (that repeatedly
removes the element hitting the largest number of sets), and it is well known this greedy
algorithm produces an O(logn) approximation.

The bound on the size of S now easily follows. Specifically, let I = {i1, i2, . . . , i|X|} be
the collection of indices, where ij was the first graph considered with deficit δ(Gij). By
the above, S is the union of the O(logn)-approximations to the sequence of hitting set
instance (E′i1 , C

′
i1

), . . . , (E′i|X|
, C′i|X|

). In particular, note that for all ij , (E′ij , C
′
ij

) is a hitting
set instance induced from the removal of a subset of edges from the initial hitting set instance
(E1, C1), and then further restricted to sets from cycles with a given deficit value. Thus the
size of the optimal solution on each of these instances can only be smaller than on (E1, C1).
This implies that the total size of the returned set S is O(OPT · |X| logn) = O(OPT ·κ logn).

As for the running time, first observe that by the above, there are O(OPT · κ logn) while
loop iterations. Next, the single call to Verifier in line 6 takes O(TAPSP). For a given loop
iteration, computing all pairwise distances in line 4 also takes O(TAPSP) time. Computing
the graph deficit in line 5 can then be done in O(m) time. For any given vertex pair s, t,
computing #sp(s, t) takes O(m + n) time by Lemma 21. Thus computing the number of
shortest paths over all edges in line 7 takes O(m2 +mn) time. For each edge e, by Corollary
24, count(e) = Nh(e, δ(G))+Nl(e, δ(G)) can be computed in O(m) time, and thus computing
all counts in line 8 takes O(m2) time. As the remaining steps can be computed in linear
time, each while loop iteration in total takes O(TAPSP +mn+m2) = O(TAPSP +m2) time,
thus implying the running time bound over all iterations in the theorem statement. J

I Remark 26. If we modify line 8 to instead set count(e) = Nl(e, δ(G)), by Theorem 6, we
get the same result for MR(G,R≥0). If instead we used the reduction from MR(G,R≥0) to
MR(G,R) of Theorem 8, the graph size increases by a linear factor, giving a slower run time.

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:17

References
1 N. Alon and S. Gutner. Balanced families of perfect hash functions and their applications.

ACM Trans. Algorithms, 6(3):54:1–54:12, 2010.
2 S. Baraty, D. Simovici, and C. Zara. The impact of triangular inequality violations on

medoid-based clustering. In Foundations of Intelligent Systems, pages 280–289. Springer, 2011.
3 M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repres-

entation. Neural Comput., 15(6):1373–1396, June 2003.
4 C. Brand, H. Dell, and T. Husfeldt. Extensor-coding. In Symposium on Theory of Computing

(STOC), pages 151–164, 2018.
5 J. Brickell, I Dhillon, S. Sra, and J. Tropp. The metric nearness problem. SIAM Journal on

Matrix Analysis and Applications, 30(1):375–396, 2008.
6 E. Candès and B. Recht. Exact matrix completion via convex optimization. Commun. ACM,

55(6):111–119, June 2012.
7 L. Sunil Chandran, Vadim V. Lozin, and C. R. Subramanian. Graphs of low chordality.

Discrete Mathematics and Theoretical Computer Science, 7:25–36, 2005.
8 S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness of

approximating multicut and sparsest-cut. Computational Complexity, 15(2):94–114, 2006.
9 C. Fan, B. Raichel, and G. Van Buskirk. Metric violation distance: Hardness and approximation.

In Symposium on Discrete Algorithms (SODA), pages 196–209, 2018.
10 A. Gilbert and L. Jain. If it ain’t broke, don’t fix it: Sparse metric repair. ArXiv, 2017.
11 S. Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual

ACM Symposium on Theory of Computing (STOC), pages 767–775, 2002.
12 E. Lee. Improved hardness for cut, interdiction, and firefighter problems. In 44th International

Colloquium on Automata, Languages, and Programming (ICALP), pages 92:1–92:14, 2017.
13 S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,

290(5500):2323–2326, 2000.
14 A. Sidiropoulos, D. Wang, and Y. Wang. Metric embeddings with outliers. In Proc. Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 670–689, 2017.
15 J. Tenenbaum, V. Silva, and J. Langford. A global geometric framework for nonlinear

dimensionality reduction. Science, 290(5500):2319–2323, 2000.
16 L. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,

8(3):410–421, 1979.
17 F. Wang and J. Sun. Survey on distance metric learning and dimensionality reduction in data

mining. Data Mining and Knowledge Discovery, 29(2):534–564, Mar 2015.

SWAT 2020

24:18 Generalized Metric Repair on Graphs

A Transitioning to Graph Metric Repair

A.1 The decrease only case
For the problem MR(G,R≤0), consider the following simple algorithm, used in previous
works for the special case when G = Kn.

Algorithm 5 Decrease Metric Repair (Dmr)

1: function DMR(G = (V,E,w))
2: Let W = w

3: For any edge e = uv ∈ E, set W (e) = weight of a shortest path between u and v
4: return W − w

Theorem 5. The problem MR(G,R≤0) can be solved in O(TAPSP) time by the Dmr al-
gorithm.
Moreover, the problem becomes hard if even a single positive value is allowed. That is, if
0 ∈ Ω and Ω ∩ R>0 6= ∅ then MR(G,Ω) is APX-Complete.

Proof. For the first part, let e ∈ G be an edge whose edge weight is bigger than the shortest
path between the two end points of e. Then in this case e is the heavy edge in a broken
cycle. Hence, any decrease only solution must decrease this edge. Thus all edges decreased
by Dmr are edges that must be decreased.

By the same reasoning we see that this new weighted graph has no broken cycles. Thus,
we see that our algorithm gives a sparsest solution to MR(G,R≤0) in Θ(TAPSP) time.

For the second part, the reduction is the same as that of Fan et al. [9]. However, we
make the observation that for any value α > 0, by appropriately scaling the weights of
the reduction in Fan et al. [9], MR(G,R≤0) is still APX-Hard in the extreme case when
Ω = {0, α}. J

I Corollary 27. For any G = (V,E,w) Dmr returns the smallest solution for any `p norm
for p ∈ [1,∞).

Proof. The proof of Theorem 5 actually shows that there is a unique support for the sparsest
solution, i.e., the set of all heavy edges. In fact any decrease only solution must contain all
of these edges in its support. We can also see that Dmr decreases these by the minimum
amount so that the cycles are unbroken. Thus, this solution is in fact the smallest for any `p
norm. J

A.2 Structural results

Proposition 7. The Verifier algorithm (Algorithm 1), given a weighted graph G and a
potential support for a solution S, determines in O(TAPSP) time whether there exists a valid
(increase only or general) solution on that support and if one exists finds one.

Proof. Let G = (V,E,w) be the original graph and let M be the maximum edge weight from
the graph G. The algorithm defines a new graph Ĝ = (V,E, ŵ), with the following weights

ŵ(e) =
{
w(e) e 6∈ S
M e ∈ S

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:19

For each e = (v1, v2) ∈ E, line 4 sets w(e) to be the weight of the shortest path in Ĝ from v1
to v2. Thus, at the end of the algorithm w(e) satisfies the shortest path metric of Ĝ. As the
algorithm outputs w if and only if only edge weights in S are modified (increased), it suffices
to argue S is a regular cover (light cover) if and only if only edge weights in S are modified
(increased).

Assume that S is a regular or light cover. We argue line 4 only updates the weights of
the edges in S. Note that G \ S has no broken cycles. Thus, for any e = (v1, v2) ∈ G \ S we
have that the shortest path from v1 to v2 must be e. Now consider any path P from v1 to v2
in Ĝ. If P ∩ S = ∅, then w(P) ≥ w(e). On the other hand if P ∩ S 6= ∅, then let ẽ ∈ P ∩ S.
Then, we have that

w(P) ≥ w(ẽ) = M ≥ w(e)

Thus, in either case, w(P) ≥ w(e). Hence for all e ∈ G \ S we do not change its weight.
If S is a light cover, we also need to argue that the weights only increased. Let e =

(v1, v2) ∈ S. Let P be a path of smallest weight in Ĝ. Suppose P ∩ S 6= ∅, then, we have
that w(P) ≥M ≥ w(e). Thus, in this case we could not have decreased the weight. Thus,
assume that P ∩ S = ∅. If we still have that w(P) ≥ w(e), then we could not have decreased
the weight. Thus, let us further assume that w(P) < w(e). In this case, P along with e form
a broken cycle in G, with e as the heavy edge. But then since S is a light cover, we have
that P ∩ S 6= ∅. Thus, we have a contradiction and this case cannot occur. Thus, if S is a
light cover, then we only increase the edge weights.

Now assume S is not a regular cover (light cover). Then there exists a broken cycle C
such that none of its (light) edges are in S. Thus, there is a broken cycle C in Ĝ. Let e be
the heavy edge of C, then on line 4 the weight of e will be decreased, and thus our algorithm
will return NULL. J

The next theorem shows that once we know the support, the set of all possible solutions
on that support is a nice space.

I Theorem 28. For any weighted graph G and support S we have that the set of solutions
with support S is a closed convex subset of Rn×n. Additionally, if G−S is a connected graph
or we require an upper bound on the weight of each edge, then the set of solutions is compact.

Proof. Let xij for 1 ≤ i, j ≤ n be our coordinates. Then the equations xij = cij for (i, j)
not in the support and xij ≤ xik + xkj define a closed convex set. Thus, we see the first part.
For the second part we just need to see that set is bounded to get compactness. If we have
that G− S is connected then for all e ∈ S there is a path between end points of e in G− S.
Thus, the weight of this path is an upper bound. On the other hand 0 is always a lower
bound. Thus, we get compactness if G− S is connected. J

B Approximation Algorithms

Here we give the missing proofs from our O(κ logn)-approximation algorithm.

Lemma 21. Let G be a positively weighted graph, where for all pairs of vertices u, v one
has constant time access to the value d(u, v). Then for any pair of vertices s, t, the value
#sp(s, t) can be computed in O(m+ n) time.

Proof. Let V = {v1, v2, v3, ..., vn}, and let N(vi) denote the set of neighbors of vi. Define
Xi = {vj ∈ N(vi) | w(vi, vj) + d(vj , t) = d(vi, t)}, that is, Xi is the set of neighbors of vi

SWAT 2020

24:20 Generalized Metric Repair on Graphs

where there is a shortest path from t to vi passing through that neighbor. Thus we have,

#sp(vi, t) =
∑
vj∈Xi

#sp(vj , t).

Note that any shortest path from vi to t can only use vertices vj which are closer to t than
vi. So consider a topological ordering of the vertices, where edges are conceptually oriented
from smaller to larger d(vi, t) values. Thus if we compute the #sp(vi, t) values in increasing
order of the index i, then each #sp(vi, t) value can be computed in time proportional to the
degree of vi, and so the overall running time is O(m+ n). J

Corollary 24. Given constant time access to d(u, v) and #sp(u, v) for any pair of vertices
u and v, Nh(e, δ(G)) can be computed in O(1) time and Nl(e, δ(G)) in O(m) time.

Proof. By Lemma 22, in constant time we can check whether w(e) = d(s, t) + δ(G), in
which case set Nh(e, δ(G)) = #sp(s, t), and otherwise set Nh(e, δ(G)) = 0. By Lemma
23, we can compute Nl(e, δ(G)) with a linear scan of the edges, where for each edge f in
constant time we can compute whether w(f) = d(a, s) + w(e) + d(t, b) + δ(G) and if so add
#sp(a, s) ·#sp(t, b) to the sum over X, and if w(f) = d(b, s) + w(e) + d(t, a) + δ(G) add
#sp(b, s) ·#sp(t, a) to the sum over Y . J

C Improved Analysis for Complete Graphs

Here we consider the special case when G = Kn, improving parts of the analysis from [9, 10].
First, we consider the O(OPT 1/3)-approximation algorithm of [9], which works for both
MR(Kn,R) and MR(Kn,R≥0). The running time of this algorithm is Θ(n6), since at some
point it enumerates all cycles of length ≤ 6. With a more careful analysis, we observe it suffices
to consider cycles of length ≤ 5, improving the running time to Θ(n5). For MR(Kn,R≥0) we
consider a simple, appealing algorithm with good empirical performance from [10], referred
to as IOMR-fixed. We prove that unfortunately it is an Ω(n) approximation.

C.1 5 Cycle Cover
Here we argue the running time of the O(OPT 1/3)-approximation algorithm of [9], which
works for both MR(Kn,R) and MR(Kn,R≥0), can be improved from Θ(n6) to Θ(n5). The
algorithm presented in [9] has 3 major steps. The first two steps are used to approximate the
support of the optimal solution and then the last step is actually used to find a solution given
this support. We shall focus on the first 2 steps as these are where we make modifications.

First Step: In the first step, [9] find a cover for all broken cycles of length ≤ m. In
particular, the authors use the case when m = 6. As described in [9], we can obtain an
m− 1 approximation of the optimal cover for all broken cycles of length ≤ m in O(nm) time.
Denote this cover by S≤m.

Second Step: For this step, we need to first define unit cycles. Given a broken cycle C
with heavy edge h, let e be a chord of C. Then e divides C into 2 cycles, one that contains h,
denoted heavy(C, e) and one that does not contain h denoted light(C, e). We say this cycle
is a unit cycle if for all chords e, e is not the heavy edge of light(C, e).

From the definition of a unit cycle, a light cover of all unit cycles light covers all broken
cycles. Hence, step 2 of the algorithm from [9] light covers all unit cycles not covered by S≤6
as follows. Let C be such a unit cycle. Now we know that C has at least 7 edges. Consider
the red C4 shown in Figure C.1. We know that for each e ∈ C4, we have that heavy(C, e) is

C. Fan, A. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 24:21

Figure C.1 Left: Embedding from [9]. Right: Our modified embedding for a smaller cycle. Here
the black edge is the heavy edge. The blue edges are the light edges and the red edges are the
embedded 4 cycle. The curved blue edge indicates that there are more vertices along that path

a broken cycle with at most 6 edges. Hence, we must have at least 1 edge in S≤6. But since
C has no light edges in S≤6, we must have e ∈ S≤6. Thus, we know all edges in C4 are edges
in S≤6. Moreover, observe that either chord of C4 is a light edge of C. Thus it suffices to
compute a cover with least one chord of every four cycle from the edges in S≤6, a step which
the authors in [9] denote chord4(S≤6).

In Figure C.1, we observe that the same 4 cycle can be embedded in a 6 cycle instead of
a 7 cycle. Thus, our modified algorithm is shown in Algorithm 6.

Algorithm 6 5-Cycle Cover

1: function 5 Cycle Cover(G = (V,E,w))
2: Compute a regular cover of S≤5 of all broken cycles with ≤ 5 edges
3: Compute a cover Sc = chord4(S≤5)
4: return Verifier(G,Sc ∪ S≤5)

C.2 IOMR-fixed
We will now show that IOMR-fixed is an Ω(n) approximation algorithm. The algorithm
presented in Gilbert and Jain [10] is as follows:

Algorithm 7 IOMR Fixed

Require: D ∈ Symn(R≥0)
1: function IOMR-Fixed(D)
2: D̂ = D

3: for k ← 1 to n do
4: for i← 1 to n do
5: D̂ik = max(D̂ik,maxj<i(D̂ij − D̂jk))
6: return D̂ −D

I Lemma 29. For every n, there exists a weighted graph G such that IOMR-Fixed repairs(
n−1

2
)
edge weights while an optimal solutions repairs at most (n− 2) edge weights.

SWAT 2020

24:22 Generalized Metric Repair on Graphs

Proof. Consider a matrix D where

Dij =

0 if i 6= 1, j 6= 1
2i if j = 1, i > 1
2j if i = 1, j > 1

This matrix D will be the weight matrix for the input graph Kn.
First, we claim that all entries of the form Ds1 will never be updated as entries will only

be updated the first time they are seen. Thus

Ds1 = max(Ds1,max
t<s

(Ds1 −D1t)) = max(2s,max
t<s

(2s − 2t)) = 2s

Now we just have to verify that the rest of the non-diagonal entries are updated. Let us
look at the first time an entry Drs is updated. (Here r < s.) Then we have that

D̂rs = max(Drs,max
t<s

(Dst −Dtr)) = max
t<s

(Dst −Dtr) [Since Drs = 0]

≥ Ds1 −D1r = 2s − sr > Drs.

Thus all other non-diagonal entries will be updated the first time seen. Thus, for the solution
W = D̂ −D that IOMR-fixed returns, we see that Wij > 0 for exactly all 1 < i, j ≤ n and
i 6= j. Thus, we repaired

(
n−1

2
)
edge weights.

Finally, a sparser increase only solution W can be obtained as follows. For all s > 1 we
set

W1s = Ws1 = 2n −Ds1

and all other entries of W are 0. This then gives us the desired result. J

I Corollary 30. IOMR-fixed is an Ω(n) approximation algorithm.

	Introduction
	Preliminaries
	Notation and problem definition
	Previous results

	Transitioning to Graph Metric Repair
	Structural results
	Reducing MR(G, R0) to MR(G, R)

	Hardness
	Fixed Parameter Analysis for -Chordal Graphs
	Approximation Algorithms
	L-approximation
	O(logn)-approximation

	Transitioning to Graph Metric Repair
	The decrease only case
	Structural results

	Approximation Algorithms
	Improved Analysis for Complete Graphs
	5 Cycle Cover
	IOMR-fixed

